

HI-LO® MESH

Extreme Low Elongation Mesh For High-End Electronics Printing

SAATI HiLo is a super high modulus monofilament polyester mesh. It was developed specially for tight tolerance printing to fabricate high tech products, including touch screen panels, solar cells, and membrane switches.

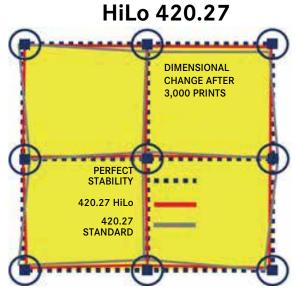
SAATI uses a special fiber whose polymeric structure gives extraordinary physical & mechanical properties to the product:


- 1. Higher dimensional stability
- 2. Extremely low mesh relaxation
- 3. Plasma-activated surface for enhanced stencil adhesion


KEY PRODUCT CHARACTERISTICS

- · Top Print Quality
- · Less tension loss during the print run
- Consistent performance during printing results in process reliability improvements
- Finer line Resolution
- Improved Ink Flow
- Superior Stencil Adhesion: less stencil breakdown and printing life far longer than conventionally treated fabrics

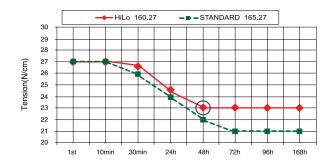
1. ELONGATION STATISTICS


The HiLo Warp & Weft overlapping is almost perfect. At 25N tension level the HiLo 140.31 Elongation Percentage is around 3%, whereas the 165.27 is around 4%.

HI-LO® MESH

Extreme Low Elongation Mesh For High-End Electronics Printing

2. Dimensional Stability


DIMENSIONAL CHANGE AFTER 3,000 PRINTS

PERFECT STABILITY
355.31 HiLo
355.31 STANDARD

Extremely low mesh relaxation guarantees:

- Low tension loss after stretching
- Mesh ready to use in less time, as it can be brought to required tension quicker
- Printing quality consistency and improved ink flow during all production run

3. Tension Loss

AVAILABILITY OF SAATI HILO MESH						
Mesh Count (in)	Thread Diameter (µm)	Weave	Mesh Opening	Open Area	Thickness	Theoretical Ink Volume (cm³/m²)
420	27	PW	29	23	42	9.6
380	31	PW	30	21	43	8.7
355	31	PW	35	25	45	10.8
305	34	PW	43	26	53	14.1